Unsupervised Learning: Principle Component Analysis

Prof. Lee, Hung-yi

Prof. Wu, Pei-Yuan

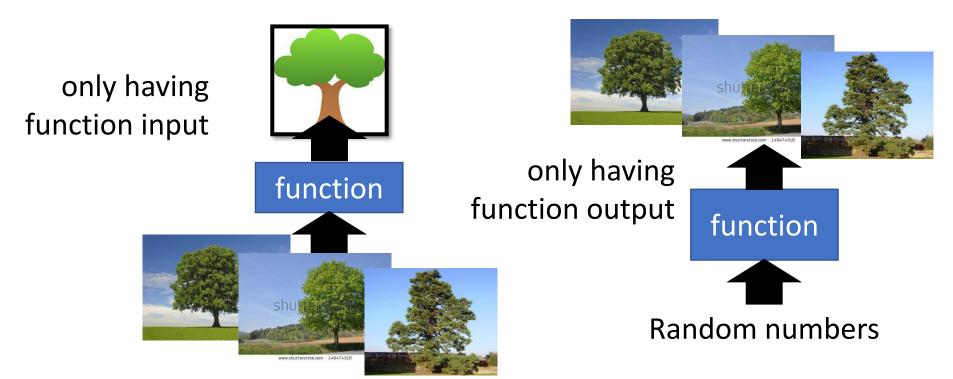
National Taiwan University

Electrical Engineering Department

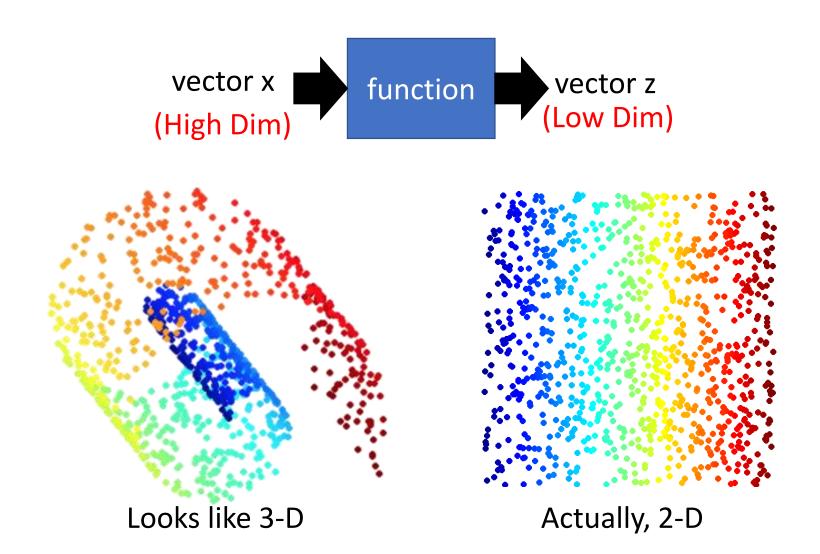
Unsupervised Learning

• Dimension Reduction (化繁為簡)

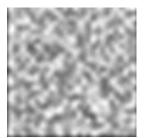
• Generation (無中生有)



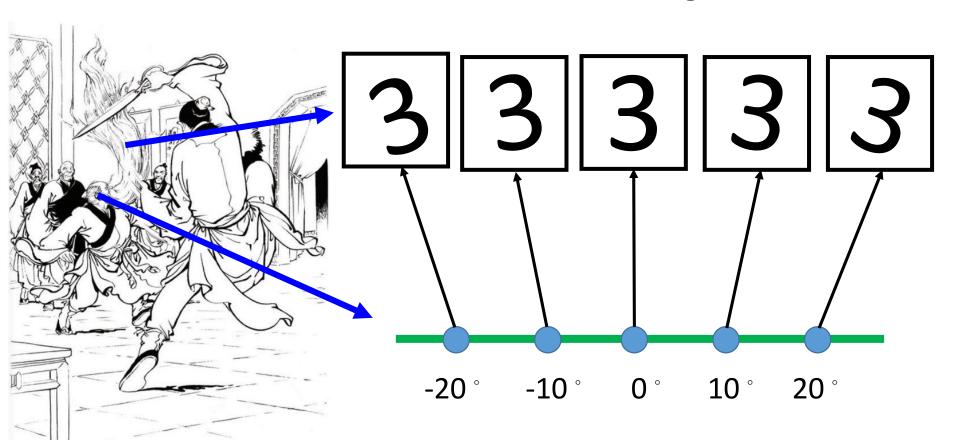
Dimension Reduction



Dimension Reduction



- In MNIST, a digit is 28 x 28 dims.
 - Most 28 x 28 dim vectors are not digits



Clustering

Cluster 3 0

 $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Open question: how many clusters do we need?

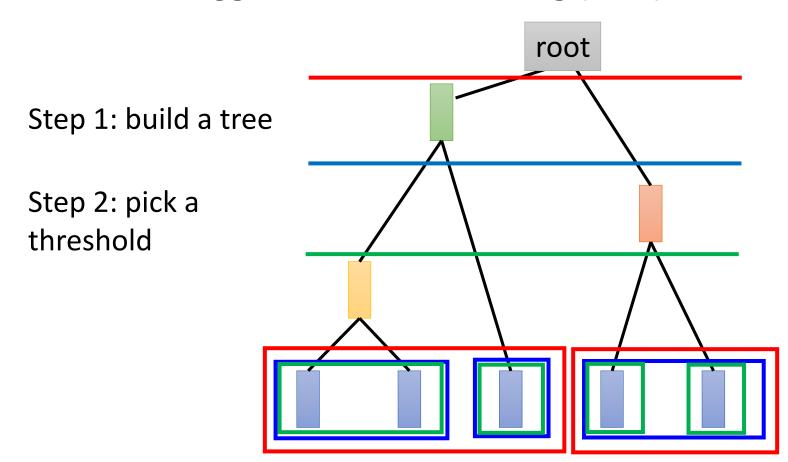
Cluster 1

Cluster 2

- K-means
 - Clustering $X = \{x^1, \dots, x^n, \dots, x^N\}$ into K clusters
 - Initialize cluster center c^i , i=1,2, ... K (K random x^n from X)
 - Repeat
 - For all x^n in X: $b_i^n \begin{cases} 1 & x^n \text{ is most "close" to } c^i \\ 0 & \text{Otherwise} \end{cases}$
 - Updating all c^i : $c^i = \sum_n b_i^n x^n / \sum_n b_i^n$

Clustering

Hierarchical Agglomerative Clustering (HAC)



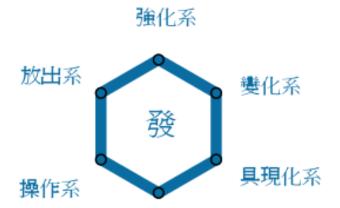
Distributed Representation

 Clustering: an object must belong to one cluster

小傑是強化系

Distributed representation

強化系	0.70
放出系	0.25
變化系	0.05
操作系	0.00
具現化系	0.00
特質系	0.00

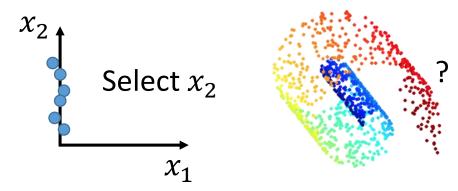


特質系

小傑是

Distributed Representation

Feature selection

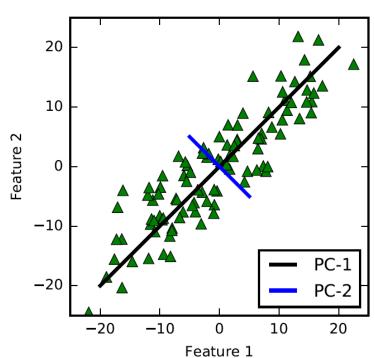


Principle component analysis (PCA)
 [Bishop, Chapter 12]

$$z = Wx$$

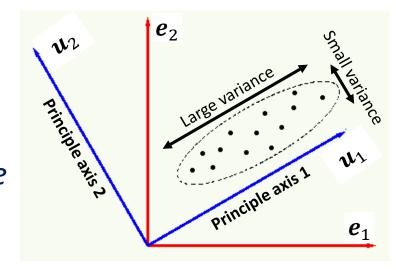
Principal Component Analysis (PCA)

- PCA's target: finding the best lower dimensional sub-space that conveys most of the variance in the original data
- Example: If we were to compress 2-D data to 1-D subspace, then PCA prefers projecting to the *black* line, since it preserves more variance comparing to *blue* line.



Principle Axes

- Objective of PCA: Given data in \mathbb{R}^M , want to *rigidly rotate* the axes to new positions (principle axes) with the following properties:
 - POrdered such that principle axis 1 has the highest variance, axis 2 has the next highest variance, ..., and axis M has the lowest variance.
 - Covariance among each pair of the principal axes is zero.
- The k'th *principle component* is the projection to the k'th principle axis.
- Keep the first m < M principle components for dimensionality reduction.



2020/10/22

Principle Component Computation

• Given N data $x_1, \dots, x_N \in \mathbb{R}^M$, PCA first compute the covariance matrix for the data

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^T = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^T$$

where $\mu \in \mathbb{R}^M$ is the data mean.

- Since Σ is symmetric, Σ can be written as $\Sigma = U \Lambda U^T$, where $U = [u_1 \dots u_M]$ is orthogonal matrix of eigenvectors (of Σ), $\Lambda = diag(\lambda_1, \dots, \lambda_M)$ is diagonal matrix of the associated eigenvalues arranged in non-ascending order $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_M \geq 0$. (Note that all eigenvalues are non-negative real scalars since Σ is semipositive definite.)
- For data $x \in \mathbb{R}^M$, compute its 1st principle component as $u_1^T x$, 2nd principle component as $u_2^T x$,..., M'th principle component as $u_M^T x$

Orthogonal matrix:

 $m{U} = [m{u}_1 \ ... \ m{u}_M] \in \mathbb{R}^{M imes M}$ is an orthogonal matrix if $m{u}_1, ..., m{u}_M$ are orthogonal and have unit length

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

That is, $U^TU = I$, namely, $U^{-1} = U^T$.

Positive definite:

 $\Sigma \in \mathbb{R}^{M \times M}$ is semi-positive definite if $x^T \Sigma x \ge 0$ for all $x \in \mathbb{R}^M$. If the equality holds only when x = 0, then Σ is positive definite.

Principle Components are Uncorrelated

• The covariance of the k'th and ℓ 'th principle components of data x_1, \dots, x_N is

$$\frac{1}{N} \sum_{i=1}^{N} \left[\mathbf{u}_{k}^{T} (\mathbf{x}_{i} - \boldsymbol{\mu}) \right] \left[\mathbf{u}_{\ell}^{T} (\mathbf{x}_{i} - \boldsymbol{\mu}) \right] = \frac{1}{N} \sum_{i=1}^{N} \mathbf{u}_{k}^{T} (\mathbf{x}_{i} - \boldsymbol{\mu}) (\mathbf{x}_{i} - \boldsymbol{\mu})^{T} \mathbf{u}_{\ell}$$

$$= \mathbf{u}_{k}^{T} \boldsymbol{\Sigma} \mathbf{u}_{\ell} = \mathbf{u}_{k}^{T} \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T} \mathbf{u}_{\ell} = \boldsymbol{e}_{k}^{T} \boldsymbol{\Lambda} \boldsymbol{e}_{\ell} = \begin{cases} \lambda_{k} & \text{if } k = \ell \\ 0 & \text{if } k \neq \ell \end{cases}$$

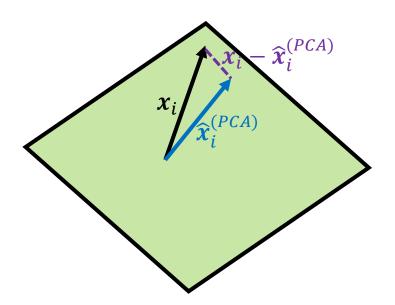
Therefore

- \triangleright The variance of the k'th principle components is λ_k .
 - ⇒ principle axis 1 has the highest variance, axis 2 has the next highest variance, ..., and axis M has the lowest variance.
- The covariance of different principle components is zero.
- \rightarrow Covariance among each pair of the principal axes is zero.

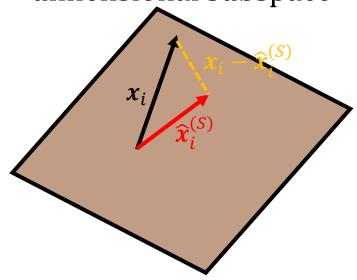
PCA and Reconstruction Error

WLOG assume zero mean $\frac{1}{N}\sum_{i=1}^{N} x_i = \mathbf{0}$

$$S_{PCA} = Span(\boldsymbol{u}_1, \dots, \boldsymbol{u}_m)$$



S: Arbitrary m-dimensional subspace



Variance after projection:

$$\sum_{i=1}^{N} \left\| \widehat{\boldsymbol{x}}_{i}^{(PCA)} \right\|^{2} \geq \sum_{i=1}^{N} \left\| \widehat{\boldsymbol{x}}_{i}^{(S)} \right\|^{2}$$

Mean square error after projection:

$$\sum_{i=1}^{N} \left\| \boldsymbol{x}_{i} - \widehat{\boldsymbol{x}}_{i}^{(PCA)} \right\|^{2} \leq \sum_{i=1}^{N} \left\| \boldsymbol{x}_{i} - \widehat{\boldsymbol{x}}_{i}^{(S)} \right\|^{2}$$

Projecting to S_{PCA} yields the minimum mean squared error among all possible m-dimensional subspaces. Why???

Low Rank Approximation

Eckart-Young-Mirsky Theorem:

Let $X \in \mathbb{R}^{M \times N}$ be a matrix with singular value decomposition $X = \mathbb{R}^{M \times N}$ UDV^T , where $U \in \mathbb{R}^{M \times M}$, $V \in \mathbb{R}^{N \times N}$ are orthogonal matrices of left- and right-eigenvectors (of X), and $D \in \mathbb{R}^{M \times N}$ is a diagonal matrix of singular values $\sigma_i = D_{ii}$, arranged by their magnitude

$$|\sigma_1| \ge |\sigma_2| \ge \dots \ge |\sigma_{\min(M,N)}|$$

Let $m \leq \min(M, N)$, then both low rank approximation problems

$$\begin{aligned} \min_{\widehat{X}} & \left\| X - \widehat{X} \right\|_{2} & \text{subject to } rank(\widehat{X}) \leq m \\ \min_{\widehat{X}} & \left\| X - \widehat{X} \right\|_{F} & \text{subject to } rank(\widehat{X}) \leq m \end{aligned}$$

Has optimal solution $\widehat{X} = \sum_{i=1}^m \sigma_i u_i v_i^T$. Here u_i and v_i denotes the i'th column in matrices U, V, respectively.

WLOG assume zero mean $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = \mathbf{0}$

$$X = [x_1 \ x_2 \ \dots x_N] = UDV^T$$

$$\Sigma = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{x}_i - \boldsymbol{\mu}) (\boldsymbol{x}_i - \boldsymbol{\mu})^T = \frac{1}{N} \boldsymbol{X} \boldsymbol{X}^T = \frac{1}{N} \boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^T \boldsymbol{V} \boldsymbol{D}^T \boldsymbol{U}^T = \boldsymbol{U} \left(\frac{1}{N} \boldsymbol{D} \boldsymbol{D}^T \right) \boldsymbol{U}^T$$

$$\Lambda = diag(\lambda_1, \dots, \lambda_M) = \frac{1}{N} \boldsymbol{D} \boldsymbol{D}^T = diag\left(\frac{\sigma_1^2}{N}, \dots, \frac{\sigma_{\min(M,N)}^2}{N}, 0, \dots, 0 \right)$$

$$|\sigma_1| \ge |\sigma_2| \ge \cdots$$
 implies $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_M$

Projection by PCA: $\widehat{\boldsymbol{x}}_n^{(PCA)} = \sum_{i=1}^m \boldsymbol{u}_i \boldsymbol{u}_i^T \boldsymbol{x}_n$

$$\widehat{\boldsymbol{X}}^{(PCA)} = \left[\widehat{\boldsymbol{x}}_{1}^{(PCA)}\widehat{\boldsymbol{x}}_{2}^{(PCA)} \dots \widehat{\boldsymbol{x}}_{N}^{(PCA)}\right] = \sum_{i=1}^{m} \boldsymbol{u}_{i}\boldsymbol{u}_{i}^{T}\boldsymbol{X} = \sum_{i=1}^{m} \boldsymbol{u}_{i}\boldsymbol{u}_{i}^{T}\boldsymbol{U}\boldsymbol{D}\boldsymbol{V}^{T} = \sum_{i=1}^{m} \sigma_{i}\boldsymbol{u}_{i}\boldsymbol{v}_{i}^{T}$$

Projection to S: $\widehat{\mathbf{x}}_n^{(S)} \in S$

$$\widehat{X}^{(S)} = \left[\widehat{x}_1^{(S)} \ \widehat{x}_2^{(S)} \ ... \ \widehat{x}_N^{(S)}\right] \Rightarrow rank(\widehat{X}^{(S)}) \leq dim(S) = m$$

Hence by Eckart-Young-Mirsky Theorem,

$$\|X - \widehat{X}^{(PCA)}\|_{E} \le \|X - \widehat{X}^{(S)}\|_{E}$$
, for all m-dimensional subspace S

That is,

$$\sum_{i=1}^{N} \left\| \boldsymbol{x}_{i} - \widehat{\boldsymbol{x}}_{i}^{(PCA)} \right\|^{2} \leq \sum_{i=1}^{N} \left\| \boldsymbol{x}_{i} - \widehat{\boldsymbol{x}}_{i}^{(S)} \right\|^{2}, \text{ for all } m\text{-dimensional subspace S}$$

Theorem 0.1. Eckart-Young-Mirsky theorem

Let $m \leq n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a matrix with singular value decomposition $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T$, where \mathbf{U}, \mathbf{V} are unitary matrices, $\Sigma = diag(\sigma_1, \sigma_2, \cdots, \sigma_m)$ is a diagonal matrix with eigenvalues $|\sigma_1| \geq |\sigma_2| \geq \cdots \geq |\sigma_m|$. Let $k \leq m$, then both low rank approximation problems

$$\begin{array}{lll}
 minimize & \|\mathbf{A} - \mathbf{A}_k\|_2 & subject \ to & rank(\mathbf{A}_k) \leq k \\
 minimize & \|\mathbf{A} - \mathbf{A}_k\|_F & subject \ to & rank(\mathbf{A}_k) \leq k \\
 \mathbf{A}_k \in \mathbb{R}^{m \times n} & \|\mathbf{A} - \mathbf{A}_k\|_F & subject \ to & rank(\mathbf{A}_k) \leq k
\end{array}$$

have optimal solution $\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T$. Here \mathbf{u}_i and \mathbf{v}_i denote the i'th column in matrices \mathbf{U} and \mathbf{V} , respectively.

Proof. • Low rank approximation under 2-norm: Prove by contradiction. Suppose there exists low rank matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ with rank $(\mathbf{B}) \leq k$ such that

$$\|\mathbf{A} - \mathbf{B}\|_2 < \|\mathbf{A} - \mathbf{A}_k\|_2 = |\sigma_{k+1}|.$$

Note that each nonzero vector $\mathbf{w} \in \text{Null}(\mathbf{B})$ satisfies

$$\frac{\|\mathbf{A}\mathbf{w}\|_{2}}{\|\mathbf{w}\|_{2}} = \frac{\|(\mathbf{A} - \mathbf{B})\mathbf{w}\|_{2}}{\|\mathbf{w}\|_{2}} \le \|\mathbf{A} - \mathbf{B}\|_{2} < |\sigma_{k+1}|$$

On the other hand, each nonzero vector $\mathbf{x} \in \mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_{k+1})$ satisfies

$$\frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2} \ge |\sigma_{k+1}|$$

Hence Null(**B**) and Span($\mathbf{v}_1, \dots, \mathbf{v}_{k+1}$) are linear independent subspaces in \mathbb{R}^n . However

$$\dim(\text{Null}(\mathbf{B})) + \dim(\text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_{k+1})) = (n - \text{rank}(B)) + (k+1) \ge n+1$$

which is greater than the dimension of \mathbb{R}^n , leading to a contradiction.

• Low rank approximation under Frobenius norm: For arbitrary $\mathbf{B} \in \mathbb{R}^{m \times n}$ with rank(\mathbf{B}) $\leq k$, denote $\mathbf{N} = \mathbf{U}^T \mathbf{B} \mathbf{V}$, then

$$\|\mathbf{A} - \mathbf{B}\|_F^2 = \|\mathbf{U}^T(\mathbf{A} - \mathbf{B})\mathbf{V}\|_F^2 = \|\Sigma - \mathbf{N}\|_F^2$$

Since dim(Null(N)) $\geq n - k$, let ξ_1, \dots, ξ_{n-k} be orthonormal vectors in Null(N), and let $\Xi = [\xi_1 \dots \xi_n] \in \mathbb{R}^{n \times n}$ be a unitary matrix. Then

$$\begin{split} \|\Sigma - \mathbf{N}\|_F^2 &= \|(\Sigma - \mathbf{N})\Xi\|_F^2 = \sum_{i=1}^n \|(\Sigma - \mathbf{N})\xi_i\|^2 \\ &\geq \sum_{i=1}^{n-k} \|(\Sigma - \mathbf{N})\xi_i\|^2 = \sum_{i=1}^{n-k} \|\Sigma \xi_i\|^2 = \sum_{j=1}^m \sigma_j^2 \sum_{i=1}^{n-k} \left(\xi_i^{(j)}\right)^2 \end{split}$$

Denote
$$w_j = \sum_{i=1}^{n-k} \left(\xi_i^{(j)}\right)^2$$
, then $0 \le w_j \le 1, \forall 1 \le j \le n$, and

$$\sum_{i=1}^{n} w_{i} = \sum_{i=1}^{n} \sum_{i=1}^{n-k} \left(\xi_{i}^{(j)} \right)^{2} = \sum_{i=1}^{n-k} \sum_{i=1}^{n} \left(\xi_{i}^{(j)} \right)^{2} = \sum_{i=1}^{n-k} \|\xi_{i}\|^{2} = n - k$$

Therefore

$$\|\Sigma - \mathbf{N}\|_F^2 \ge \sum_{j=1}^m w_j \sigma_j^2 \ge \sum_{j=1}^k 0 \cdot \sigma_j^2 + \sum_{j=k+1}^m 1 \cdot \sigma_j^2 = \|\mathbf{A} - \mathbf{A}_k\|_F^2$$

Take $X = [x_1 \ x_2 \ ... x_N]$ s.t. $\Sigma = \frac{1}{N} X X^T = U \Lambda U^T$, then

$$\operatorname{Trace}(\boldsymbol{\Phi}^{T}\boldsymbol{\Sigma}\boldsymbol{\Phi}) = \frac{1}{N}\operatorname{Trace}(\boldsymbol{\Phi}^{T}\boldsymbol{X}\boldsymbol{X}^{T}\boldsymbol{\Phi}) = \frac{1}{N}\|\boldsymbol{\Phi}^{T}\boldsymbol{X}\|_{F}^{2}$$
$$= \frac{1}{N}\sum_{i=1}^{N}\|\boldsymbol{\Phi}^{T}\boldsymbol{x}_{i}\|^{2} = \frac{1}{N}\sum_{i=1}^{N}\|\widehat{\boldsymbol{x}}_{i}^{(S)}\|^{2} \leq \frac{1}{N}\sum_{i=1}^{N}\|\widehat{\boldsymbol{x}}_{i}^{(PCA)}\|^{2}$$

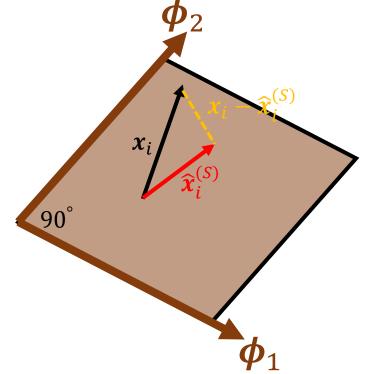
Optimization problem:

maximize Trace($\mathbf{\Phi}^T \mathbf{\Sigma} \mathbf{\Phi}$)
subject to $\mathbf{\Phi}^T \mathbf{\Phi} = \mathbf{I}_m$

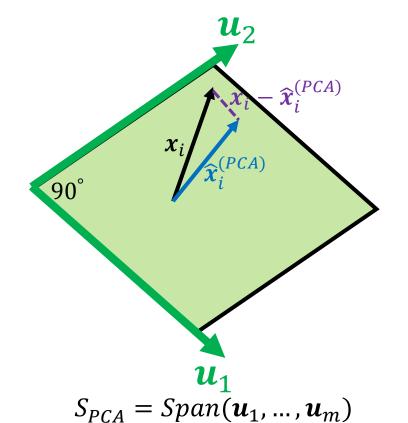
variables $\boldsymbol{\Phi} = [\boldsymbol{\phi}_1, ..., \boldsymbol{\phi}_m] \in \mathbb{R}^{M \times m}$

Optimal solution: PCA axes

$$\boldsymbol{\Phi_{opt}} = [\boldsymbol{u}_1 \ \boldsymbol{u}_2 \ \dots \boldsymbol{u}_m]$$

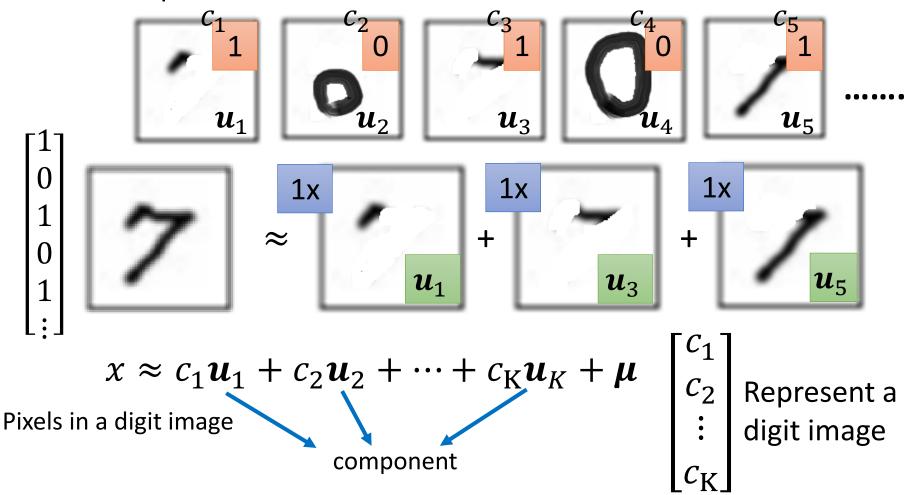


 $S = span(\Phi)$ is a m-dimensional subspace



PCA – Another Point of View

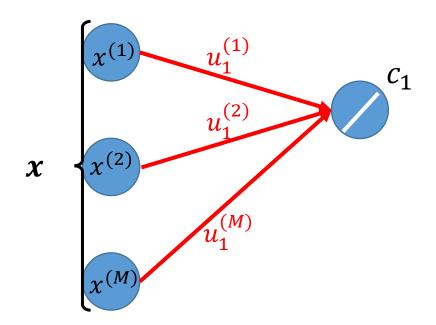
Basic Component:



Autoencoder

$$\widehat{\boldsymbol{x}} = \sum_{k=1}^K c_k \boldsymbol{u}_k + \boldsymbol{\mu}$$

$$K = 2$$
:



To minimize reconstruction error:

$$c_k = (\mathbf{x} - \boldsymbol{\mu}) \cdot \boldsymbol{u}_k$$

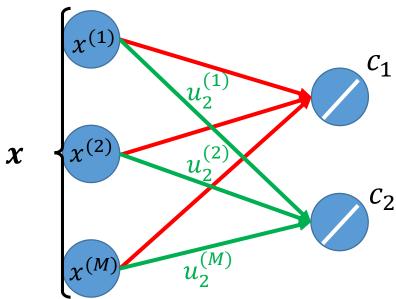
Autoencoder

$$\widehat{\boldsymbol{x}} = \sum_{k=1}^K c_k \boldsymbol{u}_k + \boldsymbol{\mu}$$

To minimize reconstruction error:

$$c_k = (\mathbf{x} - \boldsymbol{\mu}) \cdot \boldsymbol{u}_k$$

$$K=2$$
:



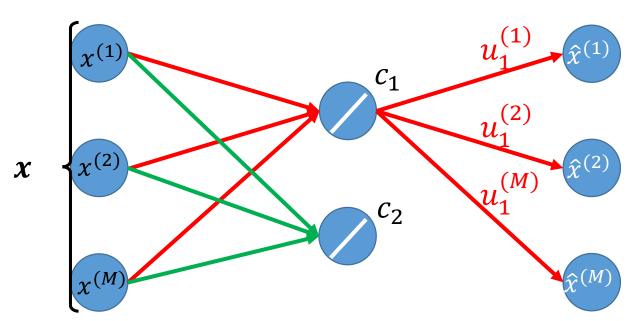
Autoencoder

$$\widehat{\boldsymbol{x}} = \sum_{k=1}^K c_k \boldsymbol{u}_k + \boldsymbol{\mu}$$

To minimize reconstruction error:

$$c_k = (\mathbf{x} - \boldsymbol{\mu}) \cdot \boldsymbol{u}_k$$

$$K = 2$$
:



Autoencoder

$$\widehat{x} = \sum_{k=1}^{K} c_k u_k + \mu$$

$$c_k = (x - \mu) \cdot u_k$$

$$K = 2:$$
It can be deep.

Deep Autoencoder
$$x^{(1)}$$

$$x^{(2)}$$

$$x^{(2)}$$

$$x^{(M)}$$

$$x^{(M)}$$
To minimize reconstruction error:
$$c_k = (x - \mu) \cdot u_k$$

$$x^{(1)}$$

$$x^{(1)}$$

$$x^{(1)}$$

$$x^{(2)}$$

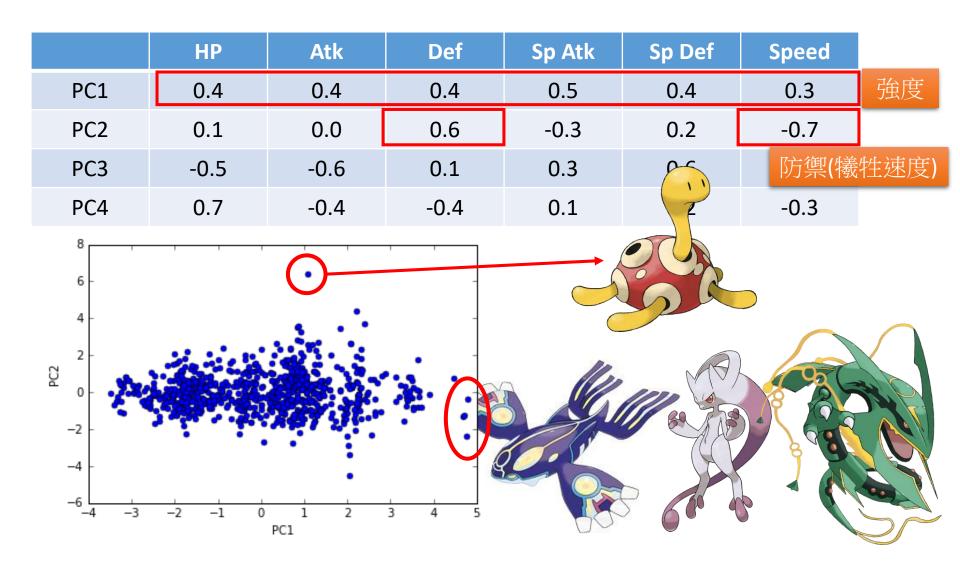
PCA - Pokémon

- Inspired from: https://www.kaggle.com/strakul5/d/abcsds/pokemon/principal-component-analysis-of-pokemon-data
- 800 Pokemons, 6 features for each (HP, Atk, Def, Sp Atk, Sp Def, Speed)
- How many principle components? $\frac{\lambda_i}{\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6}$

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
ratio	0.45	0.18	0.13	0.12	0.07	0.04

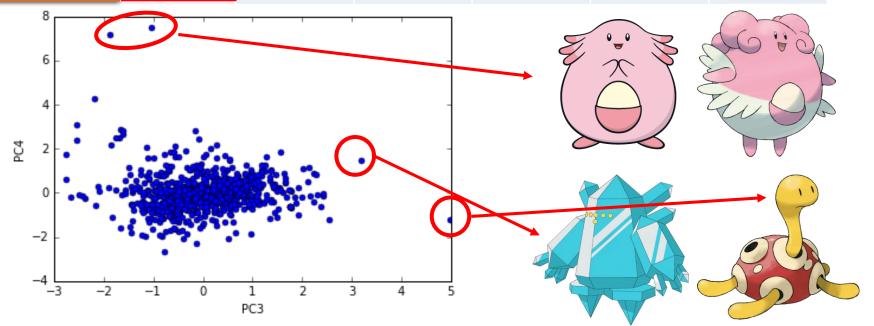
Using 4 components is good enough

PCA - Pokémon



PCA - Pokémon

	HP	Atk	Def	Sp Atk	Sp Def	Speed
PC1	0.4	0.4	0.4	0.5	0.4	0.3
PC2	0.1	0.0	0.6	-0.3	0.2	-0.7
PC3	-0.5	-0.6	0.1	0.3	0.6	特殊防禦
生命力強	0.7	-0.4	-0.4	0.1	0.2	攻擊和生

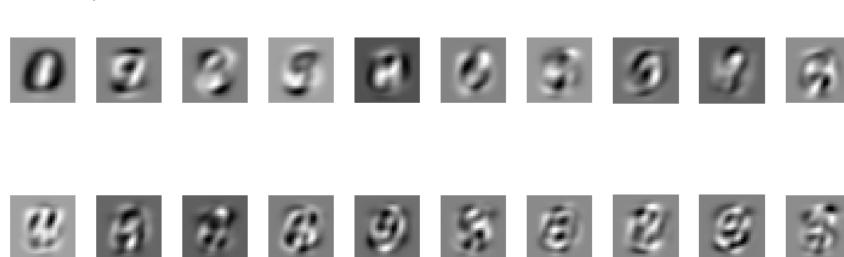


PCA - MNIST

$$= a_1 \underline{w}^1 + a_2 \underline{w}^2 + \cdots$$

images

30 components:



Eigen-digits

PCA - Face

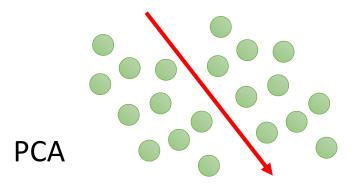
30 components:

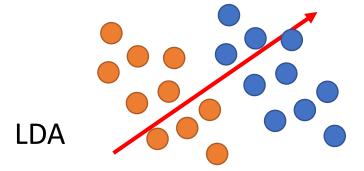
http://www.cs.unc.edu/~lazebnik/research/spring08/assignment3.html

Eigen-face

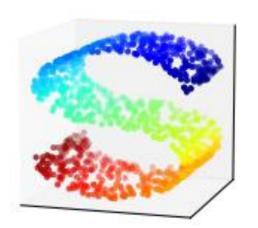
Weakness of PCA

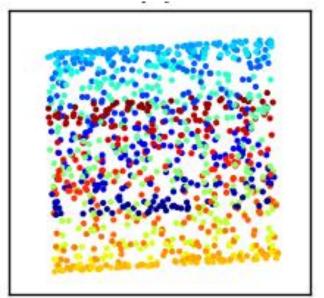
Unsupervised





• Linear





http://www.astroml.org/book_figures/c hapter7/fig_S_manifold_PCA.html