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Unsupervised Learning

e Dimension Reduction * Generation (1 475)
(L2 A )

only having
function input

only having

function ,
function output

Random numbers



Dimension Reduction

vector x
(High Dim)

vector z
(Low Dim)
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Actually, 2-D

Looks like 3-D



Dimension Reduction

* In MINIST, a digit is 28 x 28 dims.
* Most 28 x 28 dim vectors are not digits
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Clustering e (1)
-
0
(). o S W
Cluster 1
* K-means

e Clustering X = {x?1,---,x™,---,xN} into K clusters

e Initialize cluster center ct, i=1,2, ... K (K random x™ from X)
* Repeat

. 1 x™is most “close” to c'
e Forallx™inX: bl {

0 Otherwise

e Updating all ¢*: i
P & c"=Zbi"x"/Zbi"
n n



Clustering

* Hierarchical Agglomerative Clustering (HAC)

root

—
Step 1: build a tree Q \
Step 2: pick a / \ D
threshold )
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Distributed Representation

i JH

* Clustering: an object must
belong to one cluster

/MR TRIE R

L : BIER
* Distributed representation

L% 0.70
W 2 0.25
fﬁz{b%\ 0.05
Mie FE(E 2 0.00

B L& 0.00
FYHE % 0.00




Distributed Representation

vector x »Mvector Z
(High Dim) (Low Dim)
* Feature selection X2
Select x,
X1

* Principle component analysis (PCA)
[Bishop, Chapter 12] 7= Wx



Principal Component Analysis (PCA)

* PCA’s target: finding the best
lower dimensional sub-space
that conveys most of the
variance in the original data

Feature 2

* Example: If we were to
compress 2-D data to 1-D
subspace, then PCA prefers
projecting to the black line,
since it preserves more
variance comparing to blue line.
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Principle Axes

* Objective of PCA: Given data in RM,
want to rigidly rotate the axes to
new positions (principle axes) with
the following properties:

» Ordered such that principle axis 1
has the highest variance, axis 2 has
the next highest variance, ..., and
axis M has the lowest variance.

» Covariance among each pair of the
principal axes is zero.

* The k’th princiﬁle component is the
projection to the k’th principle axis.

* Keep the first m < M principle
components for dimensionality
reduction.
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Principle Component Computation

* Given N data x4, ...,
matrix for the data

xy € RM, PCA first compute the covariance

N
J = 1 . — )T = UuAUT
N (x; —w)(x; — )

where u € RM is the data mean.

* Since X' is symmetric, X can be written as ¥ = UAU”, where U =

[y ... ]
diag(A4, ...,

arranged in non-ascending order A; = 1, =

is orthogonal matrix of eigenvectors (of X'), A =
Ay is diagonal matrix of the associated eigenvalues

- = Ay = 0. (Note

that all eigenvalues are non-negative real scalars since X' is semi-

positive definite.)

* For data x € RY, compute its 15t principle component as u! x, 2“0'

principle component as uzx

Orthogonal matrix:
U = [u, ...uy] € RM*M is an orthogonal matrix if

U4, ..., Uy are orthogonal and have unit length
1 ifi=j
T
uu; = e, s
j
2020/1 {0 ifi #j
Thatis, U U = I, namely, U1 =

UT

., M’th principle component as qu

Positive definite:
X € RM*M s semi-positive definite if x” Zx > 0 for

all x € RM. If the equality holds only when x = 0,
then X is positive definite.
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Principle Components are Uncorrelated

e The covariance of the k’th and £’th principle components of data
X1, e, XN IS

N N

1 1

Nz[“g(xi — )|[ue (xi — W] = N E wi (x; — ) (x; — )",
t=1 i=1

A, ifk=4%
T T T T k

=u,lu, = u,, UAU = e, Ae, =

thestle = W BAT e = €€ {o ifk #
Therefore

»The variance of the k’th principle components is A;.

= principle axis 1 has the highest variance, axis 2 has the next
highest variance, ..., and axis M has the lowest variance.

»The covariance of different principle components is zero.

»= Covariance among each pair of the principal axes is zero.
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PCA and Reconstruction Error

1
WLOG assume zero mean— YL, x; = 0

Spca = Span(uq, ..., Uy,)

S: Arbitrary m-
dimensional subspace

~(PCA
_ 3(PCA)

Varlance after pro;ectlon Mean slauare error after prc;]jection:
ZI Z =1 P R DN
=1 =1 =1

Projecting to Sp.4 yields the minimum mean squared error
among all possible m-dimensional subspaces. Why???




Low Rank Approximation

Eckart-Young-Mirsky Theorem:

Let X € RM*N be a matrix with singular value decomposition X =

UDVT, where U € RM*M v € RY*Nare orthogonal matrices of

left- and right-eigenvectors (of X), and D € RM*N js a diagonal

matrix of singular values o; = Dy;, arranged by their magnitude

o1 = |oa] = -+ = |Ominum|

Let m < min(M, N), then both low rank approximation problems

m}%n”X —X||,  subjectto rank(X) <m

m)%'n”X — )7||F subjectto rank(X) < m

Has optimal solution X = Y™, o;u;v; . Here u; and v; denotes
the i'th column in matrices U, V, respectively.



1
WLOG assume zero mean U = v {V 1%, =0

X =[x, x, ..xy] = UDVT

1 1 1 1
= — . — , — T:— T:— T T T: — T T
> E (i — W@ — W' = XX = UDV'VD"U U(N DD )U

.l_l 1 T . of O-r%lin(M,N)
A =diag(Aq,...,Ay) = NDD = diag <W' T o.., O)
loy| = |oy| = -+ impliesA; =24, = - = Ay
Projection by PCA: X ’\(PCA) = 1 uu; x,
m
X(PCA) — lﬁ&PCA)ngCA) .Al(\fCA)] Zu u X = Zu u, UDVT = zaiuiviT
i=1 i=1 i=1

.. ~(S
Projection to S: x( Jes
X = lﬁgs) ﬁgs) x5 )] = rank(X®)) < dim(S) =

Hence by Eckart-Young-Mirsky Theorem,
_ Y(PC4)
|X — XD <

, for all m-dimensional subspace S
That is,
i

, for all m-dimensional subspace S

2
~(PCA)
) X; < ¥ - xl




Theorem 0.1. Eckart-Young-Mirsky theorem

Let m < n, A € R™*™ be a matriz with singular value decomposition A =
U VT, where U,V are unitary matrices, 3 = diag(oy, 09, .0m) is a diago-
nal matriz with eigenvalues |oq| > |og| > -+ > |op|. Let k < m, then both low
rank approxrvmation problems

minimize ||A — Agl|la  subject to  rank(Ay) <k
AkERmxn
minimize ||A — Ag||p  subject to  rank(Ay) < k
AkERmxn
. : k .9
have optimal solution Ay = > ., Jiuiv?. Here u; and v; denote the 1th

column in matrices U and V, respectively.



Proof. e Low rank approximation under 2-norm: Prove by contradiction.
Suppose there exists low rank matrix B € R™*" with rank(B) < k such
that

A = Bll2 <[|[A = Akll2 = |ok+1].

Note that each nonzero vector w € Null(B) satisfies

Aw A-B)w
| 2 I( Jw|[2 <||A—=Bl|l2 < |ogy1]

Wiz lIwll2
On the other hand, each nonzero vector x € Span(vy,--- ,Vvyy1) satisfies
|Ax][2
> |*Tk+1|
Ixl2
Hence Null(B) and Span(vy,--- ,vis1) are linear independent subspaces

i R". However
dim(Null(B))+dim(Span(vy, -+ ,Vk+1)) = (n —rank(B))+(k+1) > n+1

which 1s greater than the dimension of R", leading to a contradiction.



Low rank approximation under Frobenius norm: For arbitrary B € R™*"

with rank(B) < k, denote N = U?BV, then
|A =B} =|U"(A-B)V|; =2 - N

Since dim(Null(N)) = n — &, let &1, -+ ,&,_r be orthonormal vectors in
Null(N), and let == [¢; --- &] € R™*" be a unitary matrix. Then
IZ-N[7 =[[(E-NE|F =) [(Z-N)&|?
i=1 Wi
n—k .9
SHLESTTESNLTEDS 12 (&)
j=1 i=1
n—k ( () -
Denote w; =), ( ; ) ,then 0 <w; <1,¥1 < j <n, and
n n n—k n—k n n—k
Su =33 (€7) =X Y (¢7) = Sl =n -
ij=1 j=1 i=1 i=1 j=1 i—1

Therefore

[pop= N||F::~ng :}Zn o? + Z 1-0? =||A— Agl%

j=k+1



Take X = [x; x, ..Xy]s.t. X = —XXT UAUT then

Trace(ch):cb) = %Trace((bTXXT¢) = —||®TX||2
Optimization problem: 2 2% xl = Z | =N Z =
maximize Trace(®! Zd)

subject to ®?Td = I, Optimal solution: PCA axes
variables ® = [¢, ..., P,,] € RM*™ Dope = Uy Uy .. Upy]

¢

$1

S = span(®) is am-
dimensional subspace

u
Spca = Span(uy, ..., uy,)



PCA — Another Point of View

Basic Component:

X =~ C1Uq + CoU- + -+ CkUg + U

Pixels in a digit image
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PCA looks like a neural network with one
. . o . Autoencoder
hidden layer (linear activation function)

To minimize reconstruction error:

e = (x—p) uy




PCA looks like a neural network with one
. . o . Autoencoder
hidden layer (linear activation function)

To minimize reconstruction error:

e = (x—p) uy




PCA looks like a neural network with one
. . o . Autoencoder
hidden layer (linear activation function)

To minimize reconstruction error:
X = z CrUp + 1

e = (x—p) uy
k=1

K = 2:

N (1)




PCA looks like a neural network with one
. . o . Autoencoder
hidden layer (linear activation function)

K To minimize reconstruction error:
x = z Cp U + U

cp = (x — ) - uy
k=1

K =2: It can be deep. - Deep Autoencoder

Minimize
error




PCA - Pokemon

* Inspired from:
https://www.kaggle.com/strakul5/d/abcsds/pokemon/princi
pal-component-analysis-of-pokemon-data

» 800 Pokemons, 6 features for each (HP, Atk, Def, Sp Atk, Sp
Def, Speed) P
i

* How many principle components?
y printip P A+ A, + A + Ay + Ac + Ao

___

ratio | 0.45 0.18 0.13 0.12 | 0.07 0.04

Using 4 components is good enough



PCA - Pokemon

TN | mi | Det | spAtk | Spoet | Speed
PC1 0.4 0.4 0.4 0.5 0.4 0.3 |
PC2 0.1 0.0 0.6 -0.3 0.2 -0.7 |

PC3 -0.5 -0.6 0.1 . L (R 2 )

PC4

pC2




PCA - Pokémon
| Hp | Atk | Def | SpAtk | SpDef | Speed
PC1 0.4 0.4 0.4 0.5 0.4 0.3

P

C2

0.1 0.0
-0.5 -0.6
-0.4

0.6
0.1
-0.4

-0.3
0.3
0.1

0.2

0.6

0.2

-0.7

R D S (R
D14 A1)




pCA-MNIST o8 b agy? o

images
30 components:
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PCA - Face

30 components:
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http://www.cs.unc.edu/~lazebnik/research/spr Eigen—fa ce
ing08/assignment3.html




Weakness of PCA

* Unsupervised
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e Linear

http://www.astroml.org/book_figures/c
hapter7/fig_S_manifold PCA.html



