Ensemble

Framework of Ensemble

- Get a set of classifiers
 - f₁(x), f₂(x), f₃(x), 坦 補 DD T

They should be diverse.

- Aggregate the classifiers (*properly*)
 - 在打王時每個人都有該站的位置

Ensemble: Bagging

Review: Bias v.s. Variance

This approach would be helpful when Bagging your model is complex, easy to overfit. e.g. decision tree

Experiment: Function of Miku

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ MLDS_2015_2/theano/miku

(1st column: x, 2nd column: y, 3rd column: output (1 or 0))

100 Depth = 15 00

0

Depth = 20 100

100

0

Random Forest

• Decision tree:

train	f ₁	f ₂	f ₃	f ₄
X ¹	0	Х	0	Х
X ²	0	Х	Х	0
х ³	Х	0	0	Х
x ⁴	Х	0	Х	0

- Easy to achieve 0% error rate on training data
 - If each training example has its own leaf
- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient
 - Randomly restrict the features/questions used in each split
- Out-of-bag validation for bagging
 - Using RF = $f_2 + f_4$ to test x¹
 - Using RF = $f_2 + f_3$ to test x^2
 - Using RF = $f_1 + f_4$ to test x^3
 - Using RF = $f_1 + f_3$ to test x^4

Out-of-bag (OOB) error

Good error estimation of testing set

Random Forest

(100 trees)

Ensemble: Boosting

Improving Weak Classifiers

Boosting

Training data: $\{(x^1, \hat{y}^1), \dots, (x^n, \hat{y}^n), \dots, (x^N, \hat{y}^N)\}$ $\hat{y} = \pm 1 \text{ (binary classification)}$

- Guarantee:
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.
- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - Find another function $f_2(x)$ to help $f_1(x)$
 - However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot.
 - We want $f_2(x)$ to be complementary with $f_1(x)$ (How?)
 - Obtain the second classifier $f_2(x)$
 - Finally, combining all the classifiers
- The classifiers are learned sequentially.

How to obtain different classifiers?

- Training on different training data sets
- How to have different training data sets
 - Re-sampling your training data to form a new set
 - Re-weighting your training data to form a new set
 - In real implementation, you only have to change the cost/objective function

$$(x^{1}, \hat{y}^{1}, u^{1}) \quad u^{1} = 1 \quad 0.4 \qquad L(f) = \sum_{n} l(f(x^{n}), \hat{y}^{n}) \\ (x^{2}, \hat{y}^{2}, u^{2}) \quad u^{2} = 1 \quad 2.1 \qquad \qquad L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n}) \\ (x^{3}, \hat{y}^{3}, u^{3}) \quad u^{3} = 1 \quad 0.7 \qquad \qquad L(f) = \sum_{n} u^{n} l(f(x^{n}), \hat{y}^{n}) \\ \end{pmatrix}$$

Idea of Adaboost

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \quad Z_1 = \sum_n u_1^n \quad \varepsilon_1 < 0.5$$

Changing the example weights from u_1^n to u_2^n such that

$$\frac{\sum_{n} u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5$$

The performance of f_1 for new weights would be random.

Training $f_2(x)$ based on the new weights u_2^n

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 $\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$ $\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \qquad \begin{array}{c} f_{1}(x^{n}) \neq \hat{y}^{n} & u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1} \\ f_{1}(x^{n}) = \hat{y}^{n} & u_{2}^{n} \leftarrow u_{1}^{n} \text{ divided by } d_{1} \end{array}$ $= \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 = \sum_{f_1(x^n) \neq \hat{y}^n} u_2^n + \sum_{f_1(x^n) = \hat{y}^n} u_2^n \\ = \sum u_2^n - \sum u_2^$ $= \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1$ $\frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{-}$ - = 2 $\sum_{f_1(x^n)\neq\hat{v}^n} u_1^n d_1$

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$$

 $\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \quad \begin{array}{c} f_{1}(x^{n}) \neq \hat{y}^{n} & u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1} \\ f_{1}(x^{n}) = \hat{y}^{n} & u_{2}^{n} \leftarrow u_{1}^{n} \text{ divided by } d_{1} \end{array}$ $\frac{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 2 \quad \frac{\sum_{f_1(x^n)=\hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n)\neq\hat{y}^n} u_1^n d_1} = 1$ $\sum_{\substack{f_1(x^n) = \hat{y}^n \\ \sum_{f_1(x^n) \neq \hat{y}$

Algorithm for AdaBoost

- Giving training data $\{(x^1, \hat{y}^1, u_1^1), \dots, (x^n, \hat{y}^n, u_1^n), \dots, (x^N, \hat{y}^N, u_1^N)\}$
 - $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - For n = 1, ..., N:

• If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$ • $u_{t+1}^n = u_t^n \times d_t = u_t^n \times \exp(\alpha_t)$ $d_t = \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$ • Else: • $u_{t+1}^n = u_t^n/d_t = u_t^n \times \exp(-\alpha_t)$ $\alpha_t = \ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$

$$u_{t+1}^n \leftarrow u_t^n \times exp(\qquad \qquad \alpha_t)$$

Algorithm for AdaBoost

- We obtain a set of functions: $f_1(x), \dots, f_t(x), \dots, f_t(x)$, ..., $f_T(x)$
- How to aggregate them?
 - Uniform weight:
 - $H(x) = sign(\sum_{t=1}^{T} f_t(x))$
 - Non-uniform weight:

Smaller error ε_t , larger weight for final voting

• $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$
 $\varepsilon_t = 0.1$ $\varepsilon_t = 0.4$

 $u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n)\alpha_t) \quad \alpha_t = 1.10 \qquad \alpha_t = 0.20$

Toy Example T=3, weak classifier = decision stump

• t=1

 $f_1(x)$

Toy Example T=3, weak classifier = decision stump

$$f_3(x)$$
:
 $\alpha_3 = 0.95$

Toy Example

• Final Classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

Warning of Math
$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t f_t(x)\right) \quad \alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

As we have more and more f_t (T increases), H(x) achieves smaller and smaller error rate on training data.

Error Rate of Final Classifier

• Final classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$ $\overline{q(x)}$

•
$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

Training Data Error Rate $= \frac{1}{N} \sum \delta(H(x^n) \neq \hat{y}^n)$ $= \frac{1}{N} \sum \underline{\delta(\hat{y}^n g(x^n) < 0)}$ $\leq \frac{1}{N} \sum exp(-\hat{y}^n g(x^n))$

Training Data Error Rate

$$\leq \frac{1}{N} \sum_{n} exp(-\hat{y}^{n}g(x^{n})) = \frac{1}{N} Z_{T+1}$$

$$g(x) = \sum_{t=1}^{T} \alpha_{t}f_{t}(x)$$

$$\alpha_{t} = ln\sqrt{(1-\varepsilon_{t})/\varepsilon_{t}}$$

 Z_t : the summation of the weights of training data for training f_t

What is $Z_{T+1} = ? \quad Z_{T+1} = \sum u_{T+1}^n$ $u_{1}^{n} = 1$ $u_{t+1}^{n} = u_{t}^{n} \times exp(-\hat{y}^{n}f_{t}(x^{n})\alpha_{t})$ $u_{T+1}^{n} = \prod_{t=1}^{T} exp(-\hat{y}^{n}f_{t}(x^{n})\alpha_{t})$ $Z_{T+1} = \sum_{n} \prod_{t=1}^{T} exp(-\hat{y}^n f_t(x^n) \alpha_t)$ $= \sum_{n} exp\left(-\hat{y}^n \sum_{t=1}^{T} f_t(x^n) \alpha_t\right)$

Training Data Error Rate

$$\leq \frac{1}{N} \sum_{n} exp(-\hat{y}^{n}g(x^{n})) = \frac{1}{N}Z_{T+1}$$

$$g(x) = \sum_{t=1}^{T} \alpha_{t}f_{t}(x)$$

$$\alpha_{t} = ln\sqrt{(1-\varepsilon_{t})/\varepsilon_{t}}$$

$$Z_{1} = N \quad (\text{equal weights})$$

$$Z_{t} = \underbrace{Z_{t-1}\varepsilon_{t}}_{exp}(\alpha_{t}) + \underbrace{Z_{t-1}(1-\varepsilon_{t})}_{exp}(-\alpha_{t})$$
Misclassified portion in Z_{t-1} Correctly classified portion in Z_{t-1}

$$= Z_{t-1}\varepsilon_{t}\sqrt{(1-\varepsilon_{t})/\varepsilon_{t}} + Z_{t-1}(1-\varepsilon_{t})\sqrt{\varepsilon_{t}/(1-\varepsilon_{t})}$$

$$= Z_{t-1} \times 2\sqrt{\varepsilon_{t}(1-\varepsilon_{t})}$$

$$Z_{T+1} = N \prod_{t=1}^{T} 2\sqrt{\varepsilon_{t}(1-\varepsilon_{t})}$$
Training Data Error Rate $\leq \prod_{t=1}^{T} \frac{2\sqrt{\varepsilon_{t}(1-\varepsilon_{t})}}{|z||}$
Smaller and smaller

End of Warning

Large Margin?

Experiment: Function of Miku¹⁰⁰

Adaboost +Decision Tree

(depth = 5)

To learn more ...

- Introduction of Adaboost:
 - Freund; Schapire (1999). "A Short Introduction to Boosting"
- Multiclass/Regression
 - Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995.
 - Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pages 80–91, 1998.
- Gentle Boost
 - Schapire, Robert; Singer, Yoram (1999). "Improved Boosting Algorithms Using Confidence-rated Predictions".

General Formulation of Boosting

- Initial function $g_0(x) = 0$
- For t = 1 to T:
 - Find a function $f_t(x)$ and α_t to improve $g_{t-1}(x)$

•
$$g_{t-1}(x) = \sum_{i=1}^{t-1} \alpha_i f_i(x)$$

- $g_t(x) = g_{t-1}(x) + \alpha_t f_t(x)$
- Output: $H(x) = sign(g_T(x))$

What is the learning target of g(x)?

Minimize
$$L(g) = \sum_{n} l(\hat{y}^n, g(x^n)) = \sum_{n} exp(-\hat{y}^n g(x^n))$$

Gradient Boosting

- Find g(x), minimize $L(g) = \sum_{n} exp(-\hat{y}^{n}g(x^{n}))$
 - If we already have $g(x) = g_{t-1}(x)$, how to update g(x)?

Gradient Boosting

• Find g(x), minimize $L(g) = \sum_{n} exp(-\hat{y}^{n}g(x^{n}))$

$$g_t(x) = g_{t-1}(x) + \alpha_t f_t(x)$$

Find a minimaing I (a α_t is something like learning rate

Find
$$a_t$$
 minimizing $L(g_{t+1})$

$$L(g) = \sum_n exp(-\hat{y}^n(g_{t-1}(x) + \alpha_t f_t(x)))$$

$$= \sum_n exp(-\hat{y}^n g_{t-1}(x))exp(-\hat{y}^n \alpha_t f_t(x))$$

$$= \sum_{\hat{y}^n \neq f_t(x)} exp(-\hat{y}^n g_{t-1}(x^n))exp(\alpha_t)$$

$$+ \sum_{\hat{y}^n = f_t(x)} exp(-\hat{y}^n g_{t-1}(x^n))exp(-\alpha_t)$$
Find α_t
such that
$$\frac{\partial L(g)}{\partial \alpha_t} = 0$$

$$\alpha_t = ln\sqrt{(1 - \varepsilon_t)/\varepsilon_t}$$
Adaboost!

Cool Demo

 http://arogozhnikov.github.io/2016/07/05/gradient _boosting_playground.html

Ensemble: Stacking

