Recurrent Neural Network (RNN)

Example Application

- Slot Filling

I would like to arrive Taipei on November $2^{\text {nd }}$.

ticket booking system

Slot $\begin{cases}\text { Destination: } & \text { Taipei } \\ \text { time of arrival: } & \text { November 2 }{ }^{\text {nd }}\end{cases}$

Example Application

Solving slot filling by
Feedforward network?
Input: a word
(Each word is represented as a vector)

1-of-N encoding

How to represent each word as a vector?

1-of-N Encoding lexicon = \{apple, bag, cat, dog, elephant $\}$

The vector is lexicon size.
Each dimension corresponds to a word in the lexicon

The dimension for the word is 1 , and others are 0
apple $=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0\end{array}\right]$ bag $=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right]$ cat $=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}\right]$ dog $=\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 0\end{array}\right]$
elephant $=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]$

Beyond 1-of-N encoding

Dimension for "Other"
Word hashing

Example Application

Solving slot filling by
Feedforward network?
Input: a word
(Each word is represented as a vector)

Output:
Probability distribution that the input word belonging to the slots

Taipei
dest
time of departure

Example Application

dest
time of departure

Neural network Taipei

needs memory!

Recurrent Neural Network (RNN)

The output of hidden layer are stored in the memory.
 as another input.

Input sequence: $\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]$

Example

output sequence: $\left[\begin{array}{l}4 \\ 4\end{array}\right]$

Input sequence: $\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]$......

Example

All activation functions are linear

Input sequence: $\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]$

Example

 output sequence: $\left[\begin{array}{l}4 \\ 4\end{array}\right]\left[\begin{array}{l}12 \\ 12\end{array}\right]\left[\begin{array}{c}32 \\ 32\end{array}\right]$
Changing the sequence order will change the output.

All activation functions are linear

The same network is used again and again.

Probability of
"arrive" in each slot

Probability of
"Taipei" in each slot

Probability of
"on" in each slot

RNN

Different

Prob of "leave" in each slot

Taipei

Prob of "arrive" in each slot

Prob of "Taipei" in each slot

1

Of course it can be deep ...

Elman Network \& Jordan Network

Elman Network

Jordan Network

Bidirectional RNN

Long Short-term Memory (LSTM)

Other part of the network

Signal control the output gate (Other part of the network)

Signal control the input gate (Other part of the network)

Special Neuron:

4 inputs,
1 output

LSTM - Example

When $x_{2}=1$, add the numbers of x_{1} into the memory
When $x_{2}=-1$, reset the memory
When $x_{3}=1$, output the number in the memory.

Original Network:

>Simply replace the neurons with LSTM

LSTM

vector

LSTM

LSTM

Extension: "peephole"

Multiple-layer

LSTM

Don't worry if you cannot understand this. Keras can handle it.

Keras supports
 "LSTM", "GRU", "SimpleRNN" layers

This is quite standard now.

Learning Target

Learning

Unfortunately

- RNN-based network is not always easy to learn

Real experiments on Language modeling

The error surface is rough.

Why?

Helpful Techniques

- Long Short-term Memory (LSTM)
- Can deal with gradient vanishing (not gradient explode)
$>$ Memory and input are added
$>$ The influence never disappears unless forget gate is closed

No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM

Helpful Techniques

Clockwise RNN
Structurally Constrained
Recurrent Network (SCRN)

[Jan Koutnik, JMLR'14]

[Tomas Mikolov, ICLR'15]

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V . Le, arXiv'15]
$>$ Outperform or be comparable with LSTM in 4 different tasks

More Applications

Probability of
"arrive" in each slot

Probability of
"Taipei" in each slot "on" in each slot

Many to one

－Input is a vector sequence，but output is only one vector

Sentiment Analysis

Positive（正雷）

Negative（負雷）

Positive（正雷）

超好雷
好雷
普雷
負雷
超負雷

\square

Many to one

- Input is a vector sequence, but output is only one vector

Key Terms: DNN, LSTN

Many to Many（Output is shorter）

－Both input and output are both sequences，but the output is shorter．
－E．g．Speech Recognition
Output：＂好棒＂（character sequence）
Problem？
Why can＇t it be ＂好棒棒＂

Many to Many (Output is shorter)

- Both input and output are both sequences, but the output is shorter.
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML’06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

Many to Many (Output is shorter)

- CTC: Training

Acoustic Features:

Label: 好 棒

All possible alignments are considered as correct.

Many to Many (Output is shorter)

- CTC: example

HIS FRIEND'S

Graves, Alex, and Navdeep Jaitly. "Towards end-to-end speech recognition with recurrent neural networks." Proceedings of the 31st International Conference on Machine Learning (ICML-14). 2014.

Many to Many（No Limitation）

－Both input and output are both sequences with different lengths．\rightarrow Sequence to sequence learning
－E．g．Machine Translation（machine learning \rightarrow 機器學習）

Many to Many（No Limitation）

－Both input and output are both sequences with different lengths．\rightarrow Sequence to sequence learning
－E．g．Machine Translation（machine learning \rightarrow 機器學習）

Many to Many（No Limitation）

推		超	06／12 10：39
推	n	人	06／12 10：40
推	tion：	正	06／12 10：41
	host：	大	06／12 10：47
推		中	06／12 10：59
推	403：	天	06／12 11：11
推		外	06／12 11：13
推	527：	飛	06／12 11：17
	990b：	仙	06／12 11：32
	512：	草	06／12 12：15

推 tlkagk：＝＝＝＝＝＝＝＝＝斷＝＝＝＝＝＝＝＝＝＝
接龍推文是ptt在推文中的一種趣味玩法，與推齊有些類似但又有所不同，是指在推文中接續上一樓的字句，而推出連續的意思。該類玩法碓切起源已不可知（鄉民百科）

Many to Many（No Limitation）

－Both input and output are both sequences with different lengths．\rightarrow Sequence to sequence learning
－E．g．Machine Translation（machine learning \rightarrow 機器學習）

［Ilya Sutskever，NIPS＇14］［Dzmitry Bahdanau，arXiv＇15］

Many to Many（No Limitation）

－Both input and output are both sequences with different lengths．\rightarrow Sequence to sequence learning
－E．g．Machine Translation（machine learning \rightarrow 機器學習）

（a）Machine translation alignment

（b）Speech translation alignment

Figure 1：Alignments performed by the attention model during training

Sequence-to-sequence Auto-encoder - Text

- To understand the meaning of a word sequence, the order of the words can not be ignored.

Sequence-to-sequence Auto-encoder - Text

Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A hierarchical neural autoencoder for paragraphs and documents." arXiv preprint arXiv:1506.01057(2015).

Sequence-to-sequence Auto-encoder - Text

Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A hierarchical neural autoencoder for paragraphs and documents." arXiv preprint arXiv:1506.01057(2015).

Sequence-to-sequence Auto-encoder - Speech

Audio archive divided into variablelength audio segments

Off-line

Sequence-to-sequence Auto-encoder - Speech

vector

Sequence-to-sequence

Auto-encoder

The RNN encoder and decoder are jointly trained.

RNN Encoder

Sequence-to-sequence Auto-encoder - Speech

- Visualizing embedding vectors of the words

Demo：Chat－bot

電視影集（～40，000 sentences），美國總統大選辯論

Video Caption Generation

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney, Trevor Darrell, and Kate Saenko. 2015. Sequence to Sequence -- Video to Text. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV '15). IEEE Computer Society, Washington, DC, USA, 4534-4542.

Demo: Image Caption Generation

- Input an image, but output a sequence of words

Attention-based Model

What you learned Breakfast in these lectures / today

What is deep
learning?

Answer Organize
vacation 10 years ago

Attention-based Model

Ref:
http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Attain\ (v3).e cm.mp4/index.html

Attention-based Model v2

Neural Turing Machine

Reading Comprehension

Each sentence becomes a vector.

Reading Comprehension

End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. NIPS, 2015.
Keras example: https://github.com/fchollet/keras/blob/master/examples/babi_memnn.py

Visual Question Answering

source: http://visualqa.org/

Visual Question Answering

