Recurrent Neural Network (RNN)

Example Application

Slot Filling

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Taipei

1-of-N encoding

How to represent each word as a vector?

```
1-of-N Encodinglexicon = {apple, bag, cat, dog, elephant}The vector is lexicon size.apple = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}Each dimension correspondsbag = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}to a word in the lexiconcat = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}The dimension for the worddog = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}is 1, and others are 0elephant = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}
```

Beyond 1-of-N encoding

Dimension for "Other"

apple 0 bag cat dog 0 elephant 0 "other" w = "Sauron" w = "Gandalf"

Word hashing

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

Example Application time of dest departure y_1 y_2 arrive 2nd Taipei November on other dest other time time Problem? 2nd **November** leave Taipei on place of departure Neural network Taipei \mathcal{X}_{2}

needs memory!

Recurrent Neural Network (RNN)

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots$$

Example output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots$$

Example

output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix}$

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots$$

Example

output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix} \begin{bmatrix} 32 \\ 32 \end{bmatrix}$

RNN

The same network is used again and again.

The values stored in the memory is different.

Of course it can be deep ...

Elman Network & Jordan Network

Bidirectional RNN

Long Short-term Memory (LSTM)

LSTM - Example

When $x_2 = 1$, add the numbers of x_1 into the memory When $x_2 = -1$, reset the memory When $x_3 = 1$, output the number in the memory.

Original Network:

➤ Simply replace the neurons with LSTM

LSTM

LSTM

LSTM

Extension: "peephole"

https://img.komicolle.org/2015-09-20/src/14426967627131.gif

Learning Target

Learning

Unfortunately

RNN-based network is not always easy to learn
 Real experiments on Language modeling

The error surface is rough.

Why?

$$w=1$$
 \Rightarrow $y^{1000}=1$ Large $\partial L/\partial w$ Learning rate?

 $w=0.99$ \Rightarrow $y^{1000}\approx 0$ small $\partial L/\partial w$ Large Learning rate?

 $w=0.01$ \Rightarrow $y^{1000}\approx 0$ \Rightarrow $\partial L/\partial w$ Learning rate?

Helpful Techniques

Long Short-term Memory (LSTM)

Can deal with gradient vanishing (not gradient explode)

Memory and input are added

➤ The influence never disappears unless forget gate is closed

No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM

Helpful Techniques

Clockwise RNN

[Jan Koutnik, JMLR'14]

Structurally Constrained Recurrent Network (SCRN)

[Tomas Mikolov, ICLR'15]

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

Outperform or be comparable with LSTM in 4 different tasks

More Applications

Probability of Probability of Probability of "arrive" in each slot "Taipei" in each slot "on" in each slot Input and output are both sequences with the same length RNN can do more than that! X^1 arrive November 2nd Taipei

Many to one

Input is a vector sequence, but output is only one vector

Many to one

Input is a vector sequence, but output is only one vector

Sheng-syun Shen, Hung-Yi Lee, "Neural Attention Models for Sequence Classification: Analysis and Application to Key Term Extraction and Dialogue Act Detection", the 17th Annual Conference of the International Speech Communication Association (INTERSPEECH'16), San Francisco, Sept. 2016

- Both input and output are both sequences, <u>but the output</u> is shorter.
 - E.g. Speech Recognition

Output: "好棒" (character sequence)

Problem?

Why can't it be "好棒棒"

- Both input and output are both sequences, <u>but the output</u> is shorter.
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Haşim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

• CTC: Training

Acoustic Features:

Label: 好棒

All possible alignments are considered as correct.

CTC: example

Graves, Alex, and Navdeep Jaitly. "Towards end-to-end speech recognition with recurrent neural networks." *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*. 2014.

- Both input and output are both sequences with different lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)

- Both input and output are both sequences <u>with different</u> lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)


```
06/12 10:39
                                           06/12 10:40
推
                                           06/12 10:41
          tion:
                                           06/12 10:47
          host:
                          由
                                           06/12 10:59
          403:
                                           06/12 11:11
                                           06/12 11:13
推
          527:
                                           06/12 11:17
          990b:
                                           06/12 11:32
                                           06/12 12:15
推 tlkagk:
```

接龍推文是ptt在推文中的一種趣味玩法,與推齊有些類似但又有所不同, 是指在推文中接續上一樓的字句,而推出連續的意思。該類玩法確切起 源已不可知(鄉民百科)

- Both input and output are both sequences <u>with different</u> lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)

- Both input and output are both sequences with different lengths. → Sequence to sequence learning
 - E.g. *Machine Translation* (machine learning→機器學習)

(a) Machine translation alignment

(b) Speech translation alignment

Figure 1: Alignments performed by the attention model during training

Sequence-to-sequence Auto-encoder - Text

 To understand the meaning of a word sequence, the order of the words can not be ignored.

Sequence-to-sequence Auto-encoder - Text

Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A hierarchical neural autoencoder for paragraphs and documents." *arXiv preprint arXiv:1506.01057*(2015).

Sequence-to-sequence Auto-encoder - Text

Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A hierarchical neural autoencoder for paragraphs and documents." *arXiv preprint arXiv:1506.01057*(2015).

Sequence-to-sequence Auto-encoder - Speech

Audio archive divided into variable-Off-line length audio segments Audio Segment to Vector **Audio Similarity** Segment to Vector Spoken Query Search Result On-line

Sequence-to-sequence Auto-encoder - Speech

Sequence-to-sequence Auto-encoder - Speech

Visualizing embedding vectors of the words

Demo: Chat-bot

電視影集 (~40,000 sentences)、美國總統大選辯論

Video Caption Generation

Correct descriptions.

S2VT: A man is doing stunts on his bike.

S2VT: A herd of zebras are walking in a field.

S2VT: A young woman is doing her hair.

S2VT: A man is shooting a gun at a target.

Relevant but incorrect descriptions.

S2VT: A small bus is running into a building.

S2VT: A man is cutting a piece of a pair of a paper.

S2VT: A cat is trying to get a small board.

Irrelevant descriptions.

S2VT: A man is pouring liquid in a pan.

S2VT: A polar bear is walking on a hill.

S2VT: A man is doing a pencil.

S2VT: A man is spreading butter on a tortilla. S2VT: A black clip to walking through a path.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney, Trevor Darrell, and Kate Saenko. 2015. Sequence to Sequence -- Video to Text. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (ICCV '15). IEEE Computer Society, Washington, DC, USA, 4534-4542.

Demo: Image Caption Generation

Input an image, but output a sequence of words

[Kelvin Xu, arXiv'15][Li Yao, ICCV'15] A vector for whole İS image woman **CNN** Input image **Caption Generation**

Attention-based Model

http://henrylo1605.blogspot.tw/2015/05/blog-post_56.html

Attention-based Model

Ref: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2015_2/Lecture/Attain%20(v3).e cm.mp4/index.html

Attention-based Model v2

Neural Turing Machine

Reading Comprehension

Reading Comprehension

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.		0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.		0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow Prediction: yellow				

End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. NIPS, 2015. **Keras example:** https://github.com/fchollet/keras/blob/master/examples/babi_memnn.py

Visual Question Answering

source: http://visualqa.org/

Visual Question Answering

